WORKSHEET FOR CMD LINEAR EQUATION

Definitions:

Point 2, having coordinates (x_2,y_2) is selected to represent the concrete mix design (CMD) which has a target air content and unit weight as follows:

$$x_2 = 6.5 \%$$

 $y_2 = \sum Design Batch Weights ÷ 1.0000 m^3$
 $y_2 =$ ______ kg ÷ 1.0000 m³
 $y_2 =$ _____ kg/m³ (rounded to 1 kg/m³)

Point1, having coordinates (x_1,y_1) is selected to represent the y-intercept which has a theoretical air content and unit weight as follows:

$$x_1 = 0.0 \%$$

 $y_1 = \sum$ Design Batch Weights ÷ 0.9350 m³
 $y_1 = \frac{\text{kg} \div 0.9350 \text{ m}^3}{\text{kg/m}^3 \text{ (rounded to 1 kg/m}^3)}$

Solution:

Linear Equation:

Predicted Unit Weight = m (Air) + b

Predicted Unit Weight = ___ (Air) + ___ (note: calculation for Predicted Unit Weight is to be rounded to 1 kg/m³)